Research Article

A Simple Method of Residential Electricity Load Forecasting by Improved Bayesian Neural Networks

Table 7

Results of time-series BNN and BNN_16 model.

ModelTraining set (60%)Test set (20%)Computing time (s)
Time delayHidden neuronsMSERMAPEMSERMAPE
(%)(%)

TS_BNN121.07e-18.58e-111.751.05e-18.57e-111.866
221.06e-28.58e-111.791.04e-18.63e-112.255
5028.79e-28.83e-110.748.76e-28.87e-111.34192
161.01e-28.65e-111.469.80e-28.74e-111.6727
189.84e-28.68e-111.731.05e-18.66e-111.5029

BNN_16-29.27e-28.78e-111.389.41e-28.75e-111.402
-38.90e-28.84e-111.419.65e-28.68e-111.552
-58.56e-28.88e-110.939.46e-28.75e-110.723
-88.26e-28.92e-110.648.56e-28.87e-110.526
-108.16e-28.93e-110.548.77e-28.88e-110.927
-157.78e-28.99e-110.558.97e-28.80e-110.4218
-187.72e-28.99e-110.368.95e-28.83e-110.87139
-207.62e-29.01e-110.438.80e-28.83e-110.94148
-307.19e-29.07e-110.139.29e-28.78e-110.98355
-506.47e-29.17e-19.629.41e-28.73e-111.59732
-1005.81e-29.26e-19.041.07e-18.59e-112.501856