Research Article
A Simple Method of Residential Electricity Load Forecasting by Improved Bayesian Neural Networks
Table 7
Results of time-series BNN and BNN_16 model.
| Model | | | Training set (60%) | Test set (20%) | Computing time (s) | | Time delay | Hidden neurons | MSE | R | MAPE | MSE | R | MAPE | (%) | (%) |
| TS_BNN | 1 | 2 | 1.07e-1 | 8.58e-1 | 11.75 | 1.05e-1 | 8.57e-1 | 11.86 | 6 | 2 | 2 | 1.06e-2 | 8.58e-1 | 11.79 | 1.04e-1 | 8.63e-1 | 12.25 | 5 | 50 | 2 | 8.79e-2 | 8.83e-1 | 10.74 | 8.76e-2 | 8.87e-1 | 11.34 | 192 | 1 | 6 | 1.01e-2 | 8.65e-1 | 11.46 | 9.80e-2 | 8.74e-1 | 11.67 | 27 | 1 | 8 | 9.84e-2 | 8.68e-1 | 11.73 | 1.05e-1 | 8.66e-1 | 11.50 | 29 |
| BNN_16 | - | 2 | 9.27e-2 | 8.78e-1 | 11.38 | 9.41e-2 | 8.75e-1 | 11.40 | 2 | - | 3 | 8.90e-2 | 8.84e-1 | 11.41 | 9.65e-2 | 8.68e-1 | 11.55 | 2 | - | 5 | 8.56e-2 | 8.88e-1 | 10.93 | 9.46e-2 | 8.75e-1 | 10.72 | 3 | - | 8 | 8.26e-2 | 8.92e-1 | 10.64 | 8.56e-2 | 8.87e-1 | 10.52 | 6 | - | 10 | 8.16e-2 | 8.93e-1 | 10.54 | 8.77e-2 | 8.88e-1 | 10.92 | 7 | - | 15 | 7.78e-2 | 8.99e-1 | 10.55 | 8.97e-2 | 8.80e-1 | 10.42 | 18 | - | 18 | 7.72e-2 | 8.99e-1 | 10.36 | 8.95e-2 | 8.83e-1 | 10.87 | 139 | - | 20 | 7.62e-2 | 9.01e-1 | 10.43 | 8.80e-2 | 8.83e-1 | 10.94 | 148 | - | 30 | 7.19e-2 | 9.07e-1 | 10.13 | 9.29e-2 | 8.78e-1 | 10.98 | 355 | - | 50 | 6.47e-2 | 9.17e-1 | 9.62 | 9.41e-2 | 8.73e-1 | 11.59 | 732 | - | 100 | 5.81e-2 | 9.26e-1 | 9.04 | 1.07e-1 | 8.59e-1 | 12.50 | 1856 |
|
|