Research Article

Improvement Analysis and Application of Real-Coded Genetic Algorithm for Solving Constrained Optimization Problems

Table 2

The computational results of five ICRGAs.

functionAlgorithmAverage running time (s)Average number of iterations (times)The average value of population diversity when converging to the optimal solution

f1IRCGA-10.6397205.384028.6652
IRCGA-20.020924.142050.2294
IRCGA-30.025330.256030.6849
IRCGA-40.6936233.230011.2693
IRCGA-50.5863196.560027.2.46

f2IRCGA-10.4193115.07805.9865
IRCGA-20.013313.077010.2328
IRCGA-30.026525.63206.9731
IRCGA-40.6255206.93001.7962
IRCGA-50.049385.45007.3493

f3IRCGA-10.064318.99303.4109
IRCGA-20.014414.32105.8449
IRCGA-30.027316.23504.7633
IRCGA-40.131354.78001.4526
IRCGA-50.031721.54002.8277

f4IRCGA-115.72634630.93003.2163
IRCGA-20.2275219.166011.0648
IRCGA-30.2510272.06703.4109
IRCGA-413.13594413.90002.0108
IRCGA-50.83921264.64004.4617

f5IRCGA-10.113736.10903.9642
IRCGA-20.031630.97906.2602
IRCGA-30.040532.52304.0683
IRCGA-40.4617157.10002.1785
IRCGA-50.1300145.40003.5308

f6IRCGA-10.054722.08303.6838
IRCGA-20.020819.64505.2457
IRCGA-30.031221.05604.0133
IRCGA-40.1831309.60002.1494
IRCGA-50.1280245.78003.4931

f7IRCGA-10.057418.35905.8063
IRCGA-20.020015.455010.0381
IRCGA-30.032016.46807.8151
IRCGA-40.047926.20005.1667
IRCGA-50.036829.50206.4071
f8IRCGA-10.138142.679078.8050

IRCGA-20.026227.7540127.9265
IRCGA-30.032831.260086.3403
IRCGA-40.146446.990075.9938
IRCGA-50.145848.580074.1084

f9IRCGA-10.195960.95107.2904
IRCGA-20.015716.344013.5928
IRCGA-30.032021.264010.6016
IRCGA-40.056026.78504.2582
IRCGA-50.039623.56007.5200