Research Article
Graph-Based Collaborative Filtering with MLP
Table 2
The execution time of all algorithms in different data sets.
| | Algorithm | ML 100K | ML 1M | ML 10M | ML 20M | | k=10 | k=15 | k=10 | k=15 | k=10 | k=15 | k=10 | k=15 |
| | Graph+MLP | 2.01 | 3.12 | 4.97 | 8.61 | 10.28 | 16.34 | 23.72 | 33.25 | | (without SVD) | | Graph+MLP | 1.21 | 2.01 | 3.31 | 5.12 | 8.12 | 10.26 | 15.11 | 19.51 | | KNN+GBDT | 2.12 | 3.31 | 5.11 | 6.31 | 9.15 | 11.58 | 17.43 | 21.18 | | KNN+Bayes | 0.91 | 1.87 | 2.98 | 4.67 | 7.21 | 10.07 | 14.87 | 18.91 | | CMF | 1.12 | 2.11 | 3.51 | 5.33 | 8.44 | 10.51 | 15.67 | 19.32 | | LDA | 1.23 | 2.23 | 3.71 | 5.87 | 8.81 | 10.79 | 15.98 | 19.83 | | SVD | 1.02 | 1.91 | 3.02 | 4.71 | 7.31 | 10.13 | 15.03 | 19.21 | | UCF | 0.87 | 1.31 | 2.72 | 4.32 | 6.98 | 10.01 | 13.97 | 17.61 | | ICF | 0.92 | 1.52 | 2.88 | 4.41 | 7.05 | 10.12 | 14.01 | 17.76 |
|
|