Research Article

Single Remote Sensing Multispectral Image Dehazing Based on a Learning Framework

Table 1

The corresponding values of MSE, SSIM, PSNR,, , and FADE.

Image SSIM eFADEPSNRMSE

Original images0.7172.5172.2650.36820.153.854
0.6950.6682.1680.70616.264.126
0.6531.6542.4630.85618.345.021
0.7321.7861.9520.75724.323.908

MSRCR method0.7542.8061.9710.26922.313.785
0.7320.9271.9320.47219.324.103
0.8121.7811.6850.86320.083.953
0.7951.9531.6130.61726.623.784

HOT method0.7632.7631.6460.34118.312.357
0.7420.7152.2350.62015.322.132
0.7691.7932.3610.83116.083.416
0.7461.8511.8590.62417.622.317

DCP method0.7122.7821.8360.31621.532.365
0.7460.7571.7570.60819.562.143
0.8121.4632.3070.74118.493.446
0.7951.6732.1350.73825.432.512

Qin’s method0.7232.4022.1580.37723.133.613
0.7340.7452.0340.71218.313.815
0.6811.5932.2070.79619.434.236
0.7621.8101.6040.76324.693.752

Liu’s method0.7432.5322.2420.33021.262.854
0.7540.7162.0930.69117.573.867
0.7031.8032.2830.63718.964.351
0.7641.9311.7590.74323.713.648

Ours0.7872.7941.8250.31325.132.244
0.7950.7831.7920.49621.412.032
0.8231.8691.7850.75624.363.132
0.8122.1031.6540.76127.282.137