Research Article

Quadrilateral Interval Type-2 Fuzzy Regression Analysis for Data Outlier Detection

Table 1

A set of interval type-2 trapezoidal fuzzy numbers.


1((1, 38.09, 36.43, 5), (1, 43.09, 41.43, 5))
2((1, 62.10, 26.50, 6), (1, 67.10, 31.50, 6))
3((1, 63.76, 44.71, 7), (1, 68.76, 49.71, 7))
4((1, 74.52, 38.09, 8), (1, 79.52, 43.09, 8))
5((1, 75.38, 41.40, 7), (1, 80.38, 46.40, 7))
6((2, 52.99, 26.49, 4), (2, 57.99, 31.49, 4))
7((2, 62.93, 26.49, 5), (2, 68.93, 31.49, 5))
8((2, 72.04, 33.12, 6), (2, 77.04, 38.12, 6))
9((2, 76.12, 43.06, 7), (2, 81.12, 47.06, 7))
10((2, 90.26, 42.64, 7), (2, 95.26, 47.64, 7))
11((3, 85.70, 31.33, 6), (3, 90.70, 36.33, 6))
12((3, 95.27, 27.64, 6), (3, 100.27, 32.64, 6))
13((3, 105.98, 27.64, 6), (3, 110.98, 32.64, 6))
14((3, 79.25, 66.81, 6), (3, 84.25, 71.81, 6))
15((3, 120.5, 32.25, 6), (3, 125.5, 37.25, 6))