Research Article

Feasibility Pump Algorithm for Sparse Representation under Laplacian Noise

Table 1

Mean relative errors (11) for SFP (top in each cell), SFPreg (middle), and RLAD (bottom) for matrix conditioning of 1000.

57911

SNR = 100.2620.3790.4270.471
0.2550.2550.2480.241
0.4470.4500.5000.471

SNR = 200.0840.1430.3780.338
0.0840.0840.0820.082
0.2010.2760.4100.415

SNR = 300.0270.0270.0950.157
0.0270.0260.0250.025
0.0680.2310.2700.464

SNR =