Research Article
Feasibility Pump Algorithm for Sparse Representation under Laplacian Noise
Table 2
Mean relative errors (
11) for SFP (top in each cell), SFPreg (middle), and RLAD (bottom) for matrix conditioning of 100000.
| | 5 | 7 | 9 | 11 |
| SNR = 10 | 0.257 | 0.327 | 0.492 | 0.505 | | 0.253 | 0.252 | 0.263 | 0.256 | | 0.364 | 0.494 | 0.543 | 0.493 |
| SNR = 20 | 0.086 | 0.086 | 0.185 | 0.445 | | 0.085 | 0.082 | 0.081 | 0.079 | | 0.143 | 0.224 | 0.438 | 0.406 |
| SNR = 30 | 0.027 | 0.028 | 0.153 | 0.422 | | 0.027 | 0.027 | 0.026 | 0.025 | | 0.101 | 0.143 | 0.280 | 0.395 |
| SNR = | | | 0.023 | | | | | | | | | | | |
|
|