Research Article

Feasibility Pump Algorithm for Sparse Representation under Laplacian Noise

Table 2

Mean relative errors (11) for SFP (top in each cell), SFPreg (middle), and RLAD (bottom) for matrix conditioning of 100000.

57911

SNR = 100.2570.3270.4920.505
0.2530.2520.2630.256
0.3640.4940.5430.493

SNR = 200.0860.0860.1850.445
0.0850.0820.0810.079
0.1430.2240.4380.406

SNR = 300.0270.0280.1530.422
0.0270.0270.0260.025
0.1010.1430.2800.395

SNR = 0.023