Research Article

The Prediction of Diatom Abundance by Comparison of Various Machine Learning Methods

Table 4

Performance comparison for various models using 10-fold cross validation.

 True ValueAccuracySensitivitySpecificityAUC
AbsencePresence

Without Boruta algorithmLOGISTICAbsence573064.64%65.52%63.83%72.19%
Presence3460
kNNAbsence613365.19%67.00%63.33%74.66%
Presence3057
CARTAbsence583363.54%63.89%63.33%68.84%
Presence3357
ANNAbsence652969.61%71.33%67.78%76.65%
Presence2661
RFAbsence672871.27%74.00%68.89%76.28%
Presence2462
BAGAbsence582667.40%64.11%71.11%74.44%
Presence3364
BOOSTAbsence543263.54%60.67%66.67%73.40%
Presence3758
SVMAbsence613663.54%67.22%60.00%75.41%
Presence3054

With Boruta algorithmLOGISTICAbsence592966.29%67.05%65.59%73.61%
Presence3261
kNNAbsence563262.98%61.56%64.44%76.34%
Presence3558
CARTAbsence603762.43%66.11%58.89%68.68%
Presence3153
ANNAbsence663268.51%72.78%64.44%77.93%
Presence2558
RFAbsence672871.27%73.89%68.89%76.01%
Presence2462
BAGAbsence602668.51%66.22%71.11%75.77%
Presence3164
BOOSTAbsence562865.19%61.78%68.89%72.95%
Presence3562
SVMAbsence603662.98%66.22%60.00%76.22%
Presence3154