Research Article
Modern Machine Learning Techniques for Univariate Tunnel Settlement Forecasting: A Comparative Study
Table 1
Prediction results of all measurement points.
| Point number | PSO-SVR | PSO-BPNN | PSO-ELM | MSE | RMSE | MAPE % | MSE | RMSE | MAPE % | MSE | RMSE | MAPE % |
| 184 | 0.000158 | 0.012562 | 0.653395 | 0.072721 | 0.269669 | 0.411474 | 0.246769 | 0.496759 | 1.412007 | 191 | 0.000381 | 0.019515 | 0.120525 | 0.02051 | 0.143215 | 0.611794 | 0.018798 | 0.137107 | 0.642722 | 192 | 0.000242 | 0.015568 | 1.153007 | 0.05744 | 0.239667 | 11.00573 | 0.014357 | 0.119823 | 3.166807 | 220 | 0.002564 | 0.050634 | 0.039021 | 0.398009 | 0.630879 | 5.88052 | 0.39639 | 0.629595 | 5.869113 | 230 | 0.000128 | 0.011333 | 0.141477 | 0.134172 | 0.366295 | 0.757707 | 0.117423 | 0.342671 | 0.969642 |
| 554 | 0.003051 | 0.055235 | 1.186884 | 0.254399 | 0.504379 | 1.491434 | 0.560271 | 0.748513 | 2.346384 | 569 | 0.001809 | 0.042533 | 1.441162 | 0.378479 | 0.615206 | 2.444453 | 1.046243 | 1.02286 | 3.023007 | 570 | 0.002652 | 0.051502 | 1.116073 | 0.419282 | 0.64752 | 1.932607 | 0.509027 | 0.713461 | 2.194194 | 571 | 0.001287 | 0.035874 | 0.351681 | 0.570813 | 0.755522 | 0.957628 | 0.794074 | 0.891108 | 1.856434 | 580 | 0.003629 | 0.060241 | 2.490363 | 1.560899 | 1.24936 | 11.4861 | 0.509974 | 0.714125 | 8.178366 |
|
|