Research Article

Modern Machine Learning Techniques for Univariate Tunnel Settlement Forecasting: A Comparative Study

Table 1

Prediction results of all measurement points.

Point numberPSO-SVRPSO-BPNNPSO-ELM
MSERMSEMAPE %MSERMSEMAPE %MSERMSEMAPE %

1840.0001580.0125620.6533950.0727210.2696690.4114740.2467690.4967591.412007
1910.0003810.0195150.1205250.020510.1432150.6117940.0187980.1371070.642722
1920.0002420.0155681.1530070.057440.23966711.005730.0143570.1198233.166807
2200.0025640.0506340.0390210.3980090.6308795.880520.396390.6295955.869113
2300.0001280.0113330.1414770.1341720.3662950.7577070.1174230.3426710.969642

5540.0030510.0552351.1868840.2543990.5043791.4914340.5602710.7485132.346384
5690.0018090.0425331.4411620.3784790.6152062.4444531.0462431.022863.023007
5700.0026520.0515021.1160730.4192820.647521.9326070.5090270.7134612.194194
5710.0012870.0358740.3516810.5708130.7555220.9576280.7940740.8911081.856434
5800.0036290.0602412.4903631.5608991.2493611.48610.5099740.7141258.178366