Research Article
SiameseDenseU-Net-based Semantic Segmentation of Urban Remote Sensing Images
Table 1
Detailed parameters of SiameseDenseU-Net.
| Layer name | Kernel number | Kernel size | Inconv | 32 | 3 × 3 |
| TOP image | Down | Conv0_1 | 32 | 3 × 3 | Conv0_2 | 32 | 3 × 3 | Block0 | Conv0_3 | 32 | 1 × 1 | Maxpool0 | 32 | 2 × 2 | Down | Conv1_1 | 64 | 3 × 3 | Conv1_2 | 64 | 3 × 3 | Block1 | Conv1_3 | 64 | 1 × 1 | Maxpool1 | 64 | 2 × 2 | Down | Conv2_1 | 128 | 3 × 3 | Conv2_2 | 128 | 3 × 3 | Block2 | Conv2_3 | 128 | 1 × 1 | Maxpool2 | 128 | 2 × 2 | Down | Conv3_1 | 256 | 3 × 3 | Conv3_2 | 256 | 3 × 3 | Block3 | Conv3_3 | 256 | 1 × 1 | Maxpool3 | 256 | 2 × 2 | Down | Conv4_1 | 256 | 3 × 3 | Conv4_2 | 256 | 3 × 3 | Block4 | Conv4_3 | 256 | 1 × 1 | Maxpool4 | 256 | 2 × 2 | Up | TransposedConv0 | 256 | 2 × 2 | Conv5_1 | 256 | 1 × 1 | Block0 | Conv5_2 | 256 | 3 × 3 | Conv5_3 | 256 | 3 × 3 | Conv5_4 | 256 | 1 × 1 | Up | TransposedConv1 | 256 | 2 × 2 | Conv6_1 | 128 | 1 × 1 | Block1 | Conv6_2 | 128 | 3 × 3 | Conv6_3 | 128 | 3 × 3 | Conv6_4 | 128 | 1 × 1 | Up | TransposedConv2 | 128 | 2 × 2 | Conv7_1 | 64 | 1 × 1 | Block2 | Conv7_2 | 64 | 3 × 3 | Conv7_3 | 64 | 3 × 3 | Conv7_4 | 64 | 1 × 1 | Up | TransposedConv3 | 64 | 2 × 2 | Conv8_1 | 32 | 1 × 1 | Block3 | Conv8_2 | 32 | 3 × 3 | Conv8_3 | 32 | 3 × 3 | Conv8_4 | 32 | 1 × 1 | Up | TransposedConv4 | 32 | 2 × 2 | Conv9_1 | 32 | 1 × 1 | Block4 | Conv9_2 | 32 | 3 × 3 | Conv9_3 | 32 | 3 × 3 | Conv9_4 | 32 | 1 × 1 | nDSM | Down | Conv0_1 | 32 | 3 × 3 | Conv0_2 | 32 | 3 × 3 | Block0 | Conv0_3 | 32 | 1 × 1 | Maxpool0 | 32 | 2 × 2 | Down | | 64 | 3 × 3 | | 64 | 3 × 3 | Block1 | | 64 | 1 × 1 | | 64 | 2 × 2 | Down | Conv2_1 | 128 | 3 × 3 | Conv2_2 | 128 | 3 × 3 | Block2 | Conv2_3 | 128 | 1 × 1 | Maxpool2 | 128 | 2 × 2 | Down | Conv3_1 | 256 | 3 × 3 | Conv3_2 | 256 | 3 × 3 | Block3 | Conv3_3 | 256 | 1 × 1 | Maxpool3 | 256 | 2 × 2 | Down | Conv4_1 | 256 | 3 × 3 | Conv4_2 | 256 | 3 × 3 | Block4 | Conv4_3 | 256 | 1 × 1 | Maxpool4 | 256 | 2 × 2 | Up | TransposedConv0 | 256 | 2 × 2 | Conv5_1 | 256 | 1 × 1 | Block0 | Conv5_2 | 256 | 3 × 3 | Conv5_3 | 256 | 3 × 3 | Conv5_4 | 256 | 1 × 1 | Up | TransposedConv1 | 256 | 2 × 2 | Conv6_1 | 128 | 1 × 1 | Block1 | Conv6_2 | 128 | 3 × 3 | Conv6_3 | 128 | 3 × 3 | Conv6_4 | 128 | 1 × 1 | Up | TransposedConv2 | 128 | 2 × 2 | Conv7_1 | 64 | 1 × 1 | Block2 | Conv7_2 | 64 | 3 × 3 | Conv7_3 | 64 | 3 × 3 | Conv7_4 | 64 | 1 × 1 | Up | TransposedConv3 | 64 | 2 × 2 | Conv8_1 | 32 | 1 × 1 | Block3 | Conv8_2 | 32 | 3 × 3 | Conv8_3 | 32 | 3 × 3 | Conv8_4 | 32 | 1 × 1 | Up | TransposedConv4 | 32 | 2 × 2 | Conv9_1 | 32 | 1 × 1 | Block4 | Conv9_2 | 32 | 3 × 3 | Conv9_3 | 32 | 3 × 3 | Conv9_4 | 32 | 1 × 1 | Outconv (concatenata TOP and nDSM feature) | 6 | 3 × 3 |
|
|