Research Article

SiameseDenseU-Net-based Semantic Segmentation of Urban Remote Sensing Images

Table 2

Performances of the different models.

ModelsImpervious surfacesBuildingLow vegetationTreeCarAve. F1Overall. Acc

GTHSN87.5792.2075.0384.4475.1682.8884.92
HSN + OI88.0192.3775.8384.8676.5083.5185.38
HSN + OI + WBP88.0092.3475.9284.8675.9583.4185.39
U-Net + CEloss85.8290.5173.6283.3367.2480.1083.46
U-Net + MFB_Focalloss85.6490.3172.8683.2576.5281.7283.21
DenseU-Net + CEloss87.7792.4275.8984.3683.2184.7385.28
DenseU-Net+ MFB_Focalloss88.1892.5076.2384.6383.2384.9585.63
SiameseDenseU-Net + CEloss88.3192.4976.2284.7682.7784.9185.76
SiameseDenseU-Net + MFB_Focalloss88.9393.4876.0885.0384.1585.5386.20
erGTHSN90.8994.5178.8387.8481.8786.7988.32
HSN + OI91.3294.6679.7388.3083.6087.5288.79
HSN + OI + WBP91.3494.6779.8388.3183.5987.5588.82
U-Net + CEloss88.9292.6277.4586.7075.5484.2486.75
U-Net + MFB_Focalloss88.8492.4076.7086.5682.6885.4486.50
DenseU-Net + CEloss90.8994.5779.7787.7490.8388.7688.57
DenseU-Net + MFB_Focalloss91.3094.6480.1787.9990.9689.0188.92
SiameseDenseU-Net + CEloss91.4094.5980.2288.0990.4988.9689.04
SiameseDenseU-Net + MFB_Focalloss92.0895.5779.9688.4291.3389.4789.49

Note: bold font indicates the best results.