Research Article
SiameseDenseU-Net-based Semantic Segmentation of Urban Remote Sensing Images
Table 2
Performances of the different models.
| Models | Impervious surfaces | Building | Low vegetation | Tree | Car | Ave. F1 | Overall. Acc |
| GT | HSN | 87.57 | 92.20 | 75.03 | 84.44 | 75.16 | 82.88 | 84.92 | HSN + OI | 88.01 | 92.37 | 75.83 | 84.86 | 76.50 | 83.51 | 85.38 | HSN + OI + WBP | 88.00 | 92.34 | 75.92 | 84.86 | 75.95 | 83.41 | 85.39 | U-Net + CEloss | 85.82 | 90.51 | 73.62 | 83.33 | 67.24 | 80.10 | 83.46 | U-Net + MFB_Focalloss | 85.64 | 90.31 | 72.86 | 83.25 | 76.52 | 81.72 | 83.21 | DenseU-Net + CEloss | 87.77 | 92.42 | 75.89 | 84.36 | 83.21 | 84.73 | 85.28 | DenseU-Net+ MFB_Focalloss | 88.18 | 92.50 | 76.23 | 84.63 | 83.23 | 84.95 | 85.63 | SiameseDenseU-Net + CEloss | 88.31 | 92.49 | 76.22 | 84.76 | 82.77 | 84.91 | 85.76 | SiameseDenseU-Net + MFB_Focalloss | 88.93 | 93.48 | 76.08 | 85.03 | 84.15 | 85.53 | 86.20 | erGT | HSN | 90.89 | 94.51 | 78.83 | 87.84 | 81.87 | 86.79 | 88.32 | HSN + OI | 91.32 | 94.66 | 79.73 | 88.30 | 83.60 | 87.52 | 88.79 | HSN + OI + WBP | 91.34 | 94.67 | 79.83 | 88.31 | 83.59 | 87.55 | 88.82 | U-Net + CEloss | 88.92 | 92.62 | 77.45 | 86.70 | 75.54 | 84.24 | 86.75 | U-Net + MFB_Focalloss | 88.84 | 92.40 | 76.70 | 86.56 | 82.68 | 85.44 | 86.50 | DenseU-Net + CEloss | 90.89 | 94.57 | 79.77 | 87.74 | 90.83 | 88.76 | 88.57 | DenseU-Net + MFB_Focalloss | 91.30 | 94.64 | 80.17 | 87.99 | 90.96 | 89.01 | 88.92 | SiameseDenseU-Net + CEloss | 91.40 | 94.59 | 80.22 | 88.09 | 90.49 | 88.96 | 89.04 | SiameseDenseU-Net + MFB_Focalloss | 92.08 | 95.57 | 79.96 | 88.42 | 91.33 | 89.47 | 89.49 |
|
|
Note: bold font indicates the best results.
|