Research Article

An Image Denoising Method Based on BM4D and GAN in 3D Shearlet Domain

Table 4

The results of the different methods for Gaussian noise.

PSNR SSIM EPIFilter/%
135791113151719

Gauss noiseNoisy data40.0030.4626.0223.1020.9119.1717.7216.4815.3914.42
0.970.810.660.530.430.360.300.250.220.19
0.200.190.170.170.140.130.100.090.060.04
OB-NLM3D42.4737.5734.7332.8231.4230.3229.4028.6127.9127.28
0.990.970.950.920.900.870.840.820.790.77
0.290.280.260.250.230.200.190.170.150.14
OB-NLM3D-WM42.5237.7535.0133.1331.7330.6129.6828.8828.1827.55
0.990.970.950.930.900.880.850.830.800.78
0.320.300.290.280.260.260.240.220.200.18
ODCT3D43.7837.5334.8933.1831.9130.9030.0729.3528.7328.18
0.990.970.950.930.910.890.880.860.850.83
0.470.460.450.420.400.370.360.310.280.25
PRI-NLM3D44.0438.2635.5133.6732.3731.2930.4029.6528.9928.40
0.990.980.960.940.920.900.890.870.850.84
0.660.640.620.600.590.560.550.550.530.51
BM4D44.0938.3935.9534.3833.2132.2831.5030.8230.2329.70
0.990.980.960.950.930.920.910.900.880.87
0.700.690.680.670.600.580.560.560.550.54
Proposed45.0839.3136.7935.1233.7933.3132.1631.5830.7930.53
0.990.970.960.950.930.920.910.900.880.88
0.750.720.680.670.630.610.600.590.570.55