Research Article
An Image Denoising Method Based on BM4D and GAN in 3D Shearlet Domain
Table 5
The results of the different methods for Rician noise.
| PSNR SSIM EPI | Filter | /% | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 |
| Rician noise | Noisy data | 40.00 | 30.49 | 26.09 | 23.20 | 21.04 | 19.32 | 17.88 | 16.65 | 15.57 | 14.60 | 0.97 | 0.81 | 0.66 | 0.53 | 0.43 | 0.36 | 0.30 | 0.25 | 0.21 | 0.18 | 0.20 | 0.19 | 0.17 | 0.17 | 0.14 | 0.13 | 0.10 | 0.09 | 0.06 | 0.04 | OB-NLM3D | 42.41 | 37.45 | 34.54 | 32.51 | 30.97 | 29.71 | 28.62 | 27.64 | 26.74 | 25.91 | 0.99 | 0.97 | 0.94 | 0.91 | 0.88 | 0.85 | 0.81 | 0.78 | 0.74 | 0.70 | 0.29 | 0.28 | 0.26 | 0.25 | 0.23 | 0.21 | 0.19 | 0.17 | 0.15 | 0.14 | OB-NLM3D-WM | 42.44 | 37.54 | 34.66 | 32.61 | 31.01 | 29.69 | 28.53 | 27.50 | 26.57 | 25.71 | 0.99 | 0.97 | 0.95 | 0.92 | 0.88 | 0.85 | 0.81 | 0.77 | 0.74 | 0.70 | 0.32 | 0.30 | 0.29 | 0.28 | 0.27 | 0.27 | 0.26 | 0.23 | 0.23 | 0.20 | ODCT3D | 42.96 | 37.38 | 34.70 | 32.90 | 31.53 | 30.41 | 29.48 | 28.67 | 27.95 | 27.30 | 0.99 | 0.97 | 0.95 | 0.93 | 0.90 | 0.88 | 0.86 | 0.84 | 0.82 | 0.80 | 0.47 | 0.47 | 0.45 | 0.44 | 0.42 | 0.39 | 0.37 | 0.35 | 0.34 | 0.33 | PRI-NLM3D | 43.97 | 38.19 | 35.34 | 33.37 | 31.94 | 30.74 | 29.75 | 28.88 | 28.10 | 27.39 | 0.99 | 0.98 | 0.96 | 0.94 | 0.91 | 0.89 | 0.87 | 0.85 | 0.82 | 0.80 | 0.66 | 0.65 | 0.63 | 0.60 | 0.57 | 0.55 | 0.54 | 0.52 | 0.48 | 0.46 | BM4D | 44.08 | 38.34 | 35.83 | 34.17 | 32.89 | 31.82 | 30.90 | 30.06 | 29.29 | 28.57 | 0.99 | 0.98 | 0.96 | 0.94 | 0.93 | 0.91 | 0.89 | 0.88 | 0.86 | 0.84 | 0.71 | 0.70 | 0.69 | 0.67 | 0.62 | 0.60 | 0.59 | 0.57 | 0.56 | 0.55 | Proposed | 45.10 | 39.49 | 36.97 | 35.38 | 33.61 | 32.92 | 32.18 | 31.61 | 30.42 | 29.71 | 0.99 | 0.97 | 0.96 | 0.94 | 0.93 | 0.91 | 0.90 | 0.89 | 0.87 | 0.86 | 0.76 | 0.71 | 0.68 | 0.67 | 0.64 | 0.63 | 0.62 | 0.60 | 0.58 | 0.57 |
|
|