Research Article
Fault Diagnosis for Discrete Event Systems Using Partially Observed Petri Nets
Algorithm 2
Computation of the minimal number of flow-out.
| Input: , an observed sequence , initial marking | | Output: | | (1) for each do | | (2) derive | | (3) end for | | (4) | | (5) let , , , | | (6) if is an empty string then | | (7) let | | (8) else | | (9) for, and t is the first transition of do | | (10) if t is enabled at M then | | (11) let | | (12) else | | (13) if i = 1 then | | (14) go to 23 | | (15) else | | (16) let i = i − 1 | | (17) end if | | (18) end if | | (19) end for | | (20) end if | | (21) let , go to 6 | | (22) let i = i − 1 | | (23) ifthen | | (24) fordo | | (25) if t is enabled at M, q = q + 1 then | | (26) let , go to 6 | | (27) else | | (28) let | | (29) end if | | (30) end for | | (31) else | | (32) fordo | | (33) if t is enabled at M then | | (34) let , go to 6 | | (35) else | | (36) let | | (37) end if | | (38) end for | | (39) end if | | (40) ifthen | | (41) let i = i+1, go to 23 | | (42) else | | (43) fordo | | (44) if t is enabled at M then | | (45) let , go to 6 | | (46) else | | (47) let | | (48) end if | | (49) end for | | (50) end if | | (51) let i = i+1, go to 23 | | (52) fordo | | (53) if t is enabled at M, q = q+1 then | | (54) let , go to 6 | | (55) else | | (56) let | | (57) end if | | (58) end for | | (59) end the algorithm |
|