Research Article

A Deep Convolutional Neural Network Model for Intelligent Discrimination between Coal and Rocks in Coal Mining Face

Table 1

Convolutional neural network structure.

Layer typesOutput sizePatch sizeLearning parameters

Input(256 × 256 × 3)Initial learning rate = 0.01
Conv1(256 × 256 × 64)(64, 3, 3)Learning rate decay in each of 20 iterations = 50%
Conv2(256 × 256 × 64)(64, 3, 3)Maximum number of iterations = 250
MaxPool1(128 × 128 × 64)(2, 2)
Conv3(128 × 128 × 128)(128, 3, 3)
Conv4(128 × 128 × 128)(128, 3, 3)
MaxPool2(64 × 64 × 128)(2, 2)
Inception1(64 × 64 × 256)
MaxPool3(32 × 32 × 256)(2, 2)
Inception2(32 × 32 × 256)(512, 3, 3)
MaxPool4(16 × 16 × 256)(2, 2)
Inception3(16 × 16 × 256)(512, 3, 3)
MaxPool5(8 × 8 × 256)(2, 2)
Conv5(8 × 8 × 512)(512, 1, 1)
Flatten(512 × 1 × 1)
Dense(256 × 1 × 1)
Output3