Research Article
An Intrusion Detection Method Based on Decision Tree-Recursive Feature Elimination in Ensemble Learning
Table 7
Accuracy for each class of different methods.
| Author | Dataset | DoS | Probe | R2L | U2R | Average |
| Our method | KDD CUP 99 | 0.9976 | 0.9941 | 0.9792 | 0.9974 | 0.9921 | Our method | NSL-KDD | 0.9974 | 0.9920 | 0.9821 | 0.9977 | 0.9923 | Hussain | NSL-KDD | 1.0000 | 0.9990 | 0.7740 | 0.8860 | 0.9148 | Akashdeep | KDD CUP 99 | 0.9993 | 0.9879 | 0.9190 | 0.8660 | 0.9431 | Jia | KDD CUP 99 | 0.9990 | 0.9818 | 0.9706 | 0.8182 | 0.9424 | Jia | NSL-KDD | 0.9867 | 0.9773 | 0.9694 | 0.8182 | 0.9379 | Sun | KDD CUP 99 | 0.9741 | 0.9313 | 0.1124 | 0.2542 | 0.5680 | Andresini | KDD CUP 99 | — | — | — | — | 0.9249 | Jiang | NSL-KDD | 0.9621 | 0.6856 | 0.6045 | 0.6132 | 0.8358 |
|
|