Research Article

Integer Linear Programming Models for the Containership Stowage Problem

Table 1

List of established containership stowage mathematical models.

LiteratureHatch coverShip-bay configurationContainer typeContainer sizeContainer weightStabilityObjective
GeneralRefrigeratedOthers20′40′ToleranceAccuracy

Avriel et al. [3]Rectangular structureTo minimize the number of overstows
Ambrosino and Sciomachen [13]Not mentionedGroupsTo minimize the stowage time
Ambrosino et al. [14]Not mentionedGroupsTo minimize the stowage time
Li et al. [15]Not mentionedGroupsMultiobjectives: (1) to minimize the number of overstows; (2) to maximize the vessel utilization
Pacino et al. [18]Not mentionedGroupsTo minimize the difference between ballast water and its initial value
Delgado et al. [16]Rectangular structureHigh cubeIndividualsWeighted goal
Azevedo et al. [5]Rectangular structureSameWeighted goal
Ambrosino et al. [11]PracticalGroupsWeighted goal
Ambrosino et al. [28]PracticalOpen topGroupsWeighted goal
Christensen and Pacino [29]Not mentionedHigh cubeGroupsTo maximize the loading capacity/revenue
Roberti and Pacino [30]Rectangular structureTo minimize the number of unloading operations
Li et al. [31]Not mentionedGroupsTo minimize the number of occupied ship stacks
Li et al. [32]Rectangular structureGroupsTwo-stage objectives: (1) to minimize the ship-bay occupancy rate; (2) to minimize the heeling moment of each ship bay at each port
Fazi [33]Not mentionedHigh cubeIndividualsTo maximize the loading capacity
Parreno-Torres et al. [34]Rectangular structureTo minimize the number of overstows
Korach et al. [35]Rectangular structureHigh cubeIndividualsWeighted goal
This studyPracticalIndividualsTo minimize the number of overstows