Research Article

Deep Forest-Based Fault Diagnosis Method for Chemical Process

Table 7

Performance comparison of different faults diagnosis methods.

FDR (%)(a)(b)(c)(d)(e)(f)

Fault 199.8796.3710010099.8899.17
Fault 297.8797.62999999.13100
Fault 32.3720.626956.1342.33
Fault 410082.751009810098.83
Fault 599.87961008699.8890.97
Fault 699.5100100100100100
Fault 7100100100100100100
Fault 896.6296.87997897.0096
Fault 93.3712.123575.7551.50
Fault 1082.2588.25849892.1375.83
Fault 1164.7573.5828774.0082.00
Fault 129993.621008599.7593.50
Fault 139572.25958895.6394.83
Fault 1410095.871008710096.83
Fault 159.7521.1217010.257.17
Fault 1681.6278.1289090.0078.00
Fault 1784.8780.259610097.1394.50
Fault 1889.586.37909890.2599.67
Fault 1976.1296.12529392.0089.50
Fault 2066.3786.75889385.2576.00
Average77.4478.738082.180.5383.33

Note: (a) optimized variable selection-based PCA [34]; (b) supervised local multilayer perceptron [35]; (c) Bayesian method [36]; (d) DBN-based model [30]; (e) residual subspace associated with PCA [37]; (f) WCForest-based model (proposed in this paper).