Research Article
Modeling and Prediction of the Volatility of the Freight Rate in the Roadway Freight Market of China
Table 5
In-sample forecast performance.
| Route-specific TRV | Forecasting models | SST-EGARCH | ARIMA | NN-EGARCH | MAPE | MASE | MAPE | MASE | MAPE | MASE |
| R_CTG | 0.781 | 0.985 | 0.898 | 1.109 | 0.775 | 1.006 | R_CTK | 1.205 | 0.918 | 1.125 | 0.886 | 1.015 | 0.837 | R_CTQ | 0.886 | 0.985 | 0.891 | 0.984 | 0.881 | 1.018 | R_GTC | 1.325 | 0.912 | 1.514 | 0.976 | 1.299 | 0.991 | R_GTK | 0.915 | 0.954 | 0.851 | 0.943 | 0.801 | 0.890 | R_GTQ | 0.531 | 0.899 | 0.622 | 1.016 | 0.512 | 0.895 | R_KTC | 0.489 | 0.936 | 0.458 | 0.895 | 0.451 | 0.884 | R_KTG | 0.587 | 0.998 | 0.612 | 1.036 | 0.553 | 0.968 | R_KTQ | 0.425 | 0.943 | 0.501 | 1.042 | 0.413 | 0.922 | R_QTC | 0.554 | 0.901 | 0.585 | 0.944 | 0.499 | 0.834 | R_QTG | 0.774 | 0.933 | 0.785 | 0.938 | 0.752 | 0.939 | R_QTK | 0.667 | 0.976 | 0.590 | 0.874 | 0.584 | 0.870 |
|
|
Bold values indicate best performance.
|