Research Article

Anticipating Corporate Financial Performance from CEO Letters Utilizing Sentiment Analysis

Table 1

Related work of lexicon-based approach in sentiment analysis.

AuthorsObjectivesModelsData sourceEvaluation methodData setAccuracy (percent)Precision (percent)RecallF1

Hatzivassiloglou and Mckeown [24]Assign adjective ±Nonhierarchical clusteringWSJ corpusN/A657 adj (+) 679 adj (−)78.1–92.4N/AN/AN/A

Turney [23]Assign docs sentimentsPMI-IRAutomobile, bank, movie, travel reviewsN/A240 (+) 170 (−)65.8–84N/AN/AN/A

Turney and Littman [25]Assign docs sentimentsPMI LSAAV-ENG corpus AV-CA corpus TASA corpusN/A1614 (+) 1982 (−)82.8–95N/AN/AN/A

Taboada et al. [26]Assign adjectives ±SO-PMIReviewsN/A521 adj49.5–56.75N/AN/AN/A

Ding et al. [27]Assign adjectives, adverbs, verbs, and nouns ±Opinion Observer445 customer reviews of products from amazon.comMacroaveraging (macroaveraging means given a set of confusion tables, a set of values are generated, and each value represents the precision or recall of an automatic classifier for each category)N/AN/A919090
No context dependencyN/A928387
Without using equationN/A908587
FBSN/A927482

Taboada et al. [4]Assign adjectives, verbs, adverbs, nouns ±SO-CALReviewsAcross various domainsN/A80N/AN/AN/A

Dey et al. [28]Assign docs sentimentsSO-CAL, Senti-N-GramMovie, books, cars, cookware, phones, hotels, music, and computers reviews3-fold cross validationBooks68667671
Cars847610086
Computers80739683
Cookware74689278
Hotels74679679
Movies66647268
Music64627267
Phones86858886