Research Article

A Novel Method for Sea Surface Temperature Prediction Based on Deep Learning

Table 2

The results of p1 on the East China Sea dataset which predict 1 day’s SST value (H = 7).

MethodsRMSERMSPEMAPEMAE (°C)ACC

SVR1.08026.29853.24200.43000.9568
SVM1.793213.74675.67070.65300.9380
ARIMA1.61823.20155.09870.60350.9395
BPNN3.729415.217814.03913.87450.8491
RBFNN2.827415.327113.87212.61020.8691
RNN2.810414.421212.21572.17390.8718
GRU1.52817.78457.30241.59810.9325
LSTM1.71028.24597.79291.72910.9283
Updated-LSTM0.56252.35261.89560.58950.9795
GRU-SVM1.67118.35717.50421.73280.9359
WNN0.68122.50321.98170.66470.9632
CEEMDAN-LSTM1.53977.23516.90831.54020.9368
DGCnetwork0.44712.09321.50180.32180.9881