Research Article
A Novel Method for Sea Surface Temperature Prediction Based on Deep Learning
Table 2
The results of p1 on the East China Sea dataset which predict 1 day’s SST value (H = 7).
| Methods | RMSE | RMSPE | MAPE | MAE (°C) | ACC |
| SVR | 1.0802 | 6.2985 | 3.2420 | 0.4300 | 0.9568 | SVM | 1.7932 | 13.7467 | 5.6707 | 0.6530 | 0.9380 | ARIMA | 1.6182 | 3.2015 | 5.0987 | 0.6035 | 0.9395 | BPNN | 3.7294 | 15.2178 | 14.0391 | 3.8745 | 0.8491 | RBFNN | 2.8274 | 15.3271 | 13.8721 | 2.6102 | 0.8691 | RNN | 2.8104 | 14.4212 | 12.2157 | 2.1739 | 0.8718 | GRU | 1.5281 | 7.7845 | 7.3024 | 1.5981 | 0.9325 | LSTM | 1.7102 | 8.2459 | 7.7929 | 1.7291 | 0.9283 | Updated-LSTM | 0.5625 | 2.3526 | 1.8956 | 0.5895 | 0.9795 | GRU-SVM | 1.6711 | 8.3571 | 7.5042 | 1.7328 | 0.9359 | WNN | 0.6812 | 2.5032 | 1.9817 | 0.6647 | 0.9632 | CEEMDAN-LSTM | 1.5397 | 7.2351 | 6.9083 | 1.5402 | 0.9368 | DGCnetwork | 0.4471 | 2.0932 | 1.5018 | 0.3218 | 0.9881 |
|
|