Research Article
A Novel Method for Sea Surface Temperature Prediction Based on Deep Learning
Table 3
The results of p4 on the Yellow Sea dataset which predict 1 day’s SST value (H = 7).
| Methods | RMSE | RMSPE | MAPE | MAE (°C) | ACC |
| SVR | 1.1780 | 6.4541 | 3.4226 | 0.5137 | 0.9482 | SVM | 1.4618 | 10.0451 | 6.2955 | 0.8457 | 0.9360 | ARIMA | 1.4307 | 9.1634 | 5.8763 | 0.8147 | 0.9398 | BPNN | 3.6241 | 14.1903 | 13.0661 | 3.7138 | 0.8503 | RBFNN | 2.8173 | 14.1829 | 12.1397 | 2.5015 | 0.8711 | RNN | 3.0071 | 15.2845 | 13.7467 | 2.4630 | 0.8548 | GRU | 1.0814 | 9.9060 | 7.8468 | 1.8768 | 0.9287 | LSTM | 1.8271 | 10.0376 | 8.8478 | 2.3915 | 0.9194 | Updated-LSTM | 0.7930 | 2.1523 | 2.4121 | 0.8415 | 0.9613 | GRU-SVM | 1.5029 | 7.3219 | 7.0121 | 1.5015 | 0.9259 | WNN | 0.9180 | 2.6591 | 2.9758 | 1.2371 | 0.9528 | CEEMDAN-LSTM | 1.8274 | 13.879 | 11.2769 | 2.0746 | 0.9017 | DGCnetwork | 0.3637 | 1.7382 | 1.2915 | 0.2673 | 0.9830 |
|
|