Research Article

A Novel Hierarchical Clustering Approach Based on Universal Gravitation

Table 2

Well-tuned parameter configurations for different synthetic and real-world datasets.

DatasetK-meansK-means++SCDBSCANBirthLGCGHC
τττmetbinfγθk

Figure 4(a)2221050.30.1104070.30.20.16
Figure 4(b)77720200.20.51030100.30.20.16
Figure 4(c)44410100.20.5202050.10.20.16
Figure 4(d)5557040.10.44020100.10.20.16
Figure 4(e)5551040.10.8103040.70.20.16
Figure 4(f)33320100.20.11020100.10.20.16
Figure 4(g)44410100.20.1202040.10.20.16
Figure 4(h)22210100.30.11002040.10.20.16
Figure 4(i)22210100.20.1402040.10.20.16
Figure 4(j)2228050.20.410540.30.20.16
BTissue666540.70.2105100.30.30.14
Ecoli8880.0180.90.720840.50.20.54
Iris3330.540.70.520570.90.404
Wine3330.0150.5140550.30.10.14
PID2220.5100.20.2202040.90.10.16
BSTC22215060.80.8107040.90.10.15
Glass6660.0540.90.6202070.300.35
Cancer2220.0140.90.7503040.7006
SControl66615010100.530540.900.35