Research Article
A Novel Hierarchical Clustering Approach Based on Universal Gravitation
Table 2
Well-tuned parameter configurations for different synthetic and real-world datasets.
| Dataset | K-means | K-means++ | SC | DBSCAN | Birth | LGC | GHC | τ | τ | τ | | m | e | t | b | i | n | f | γ | θ | k |
| Figure 4(a) | 2 | 2 | 2 | 10 | 5 | 0.3 | 0.1 | 10 | 40 | 7 | 0.3 | 0.2 | 0.1 | 6 | Figure 4(b) | 7 | 7 | 7 | 20 | 20 | 0.2 | 0.5 | 10 | 30 | 10 | 0.3 | 0.2 | 0.1 | 6 | Figure 4(c) | 4 | 4 | 4 | 10 | 10 | 0.2 | 0.5 | 20 | 20 | 5 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(d) | 5 | 5 | 5 | 70 | 4 | 0.1 | 0.4 | 40 | 20 | 10 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(e) | 5 | 5 | 5 | 10 | 4 | 0.1 | 0.8 | 10 | 30 | 4 | 0.7 | 0.2 | 0.1 | 6 | Figure 4(f) | 3 | 3 | 3 | 20 | 10 | 0.2 | 0.1 | 10 | 20 | 10 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(g) | 4 | 4 | 4 | 10 | 10 | 0.2 | 0.1 | 20 | 20 | 4 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(h) | 2 | 2 | 2 | 10 | 10 | 0.3 | 0.1 | 100 | 20 | 4 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(i) | 2 | 2 | 2 | 10 | 10 | 0.2 | 0.1 | 40 | 20 | 4 | 0.1 | 0.2 | 0.1 | 6 | Figure 4(j) | 2 | 2 | 2 | 80 | 5 | 0.2 | 0.4 | 10 | 5 | 4 | 0.3 | 0.2 | 0.1 | 6 | BTissue | 6 | 6 | 6 | 5 | 4 | 0.7 | 0.2 | 10 | 5 | 10 | 0.3 | 0.3 | 0.1 | 4 | Ecoli | 8 | 8 | 8 | 0.01 | 8 | 0.9 | 0.7 | 20 | 8 | 4 | 0.5 | 0.2 | 0.5 | 4 | Iris | 3 | 3 | 3 | 0.5 | 4 | 0.7 | 0.5 | 20 | 5 | 7 | 0.9 | 0.4 | 0 | 4 | Wine | 3 | 3 | 3 | 0.01 | 5 | 0.5 | 1 | 40 | 5 | 5 | 0.3 | 0.1 | 0.1 | 4 | PID | 2 | 2 | 2 | 0.5 | 10 | 0.2 | 0.2 | 20 | 20 | 4 | 0.9 | 0.1 | 0.1 | 6 | BSTC | 2 | 2 | 2 | 150 | 6 | 0.8 | 0.8 | 10 | 70 | 4 | 0.9 | 0.1 | 0.1 | 5 | Glass | 6 | 6 | 6 | 0.05 | 4 | 0.9 | 0.6 | 20 | 20 | 7 | 0.3 | 0 | 0.3 | 5 | Cancer | 2 | 2 | 2 | 0.01 | 4 | 0.9 | 0.7 | 50 | 30 | 4 | 0.7 | 0 | 0 | 6 | SControl | 6 | 6 | 6 | 150 | 10 | 10 | 0.5 | 30 | 5 | 4 | 0.9 | 0 | 0.3 | 5 |
|
|