Research Article
Network Traffic Anomaly Detection Based on ML-ESN for Power Metering System
Table 4
The parameters of ML-ESN experiment.
| | Parameters | Values |
| | Input dimension number | 5 | | Output dimension number | 10 | | Reservoir number | 3 | | Reservoir neurons number | 1000 | | Reservoir activation fn. | Tanh | | Output layer activation fn. | Sigmoid | | Update rate | 0.9 | | Random seed | 50 | | Regularization rate | |
|
|