Research Article

Complete Defense Framework to Protect Deep Neural Networks against Adversarial Examples

Table 10

Classification accuracy of adv-Inception-v3 as targeted network (%).

The proportion of legitimate examples (%)0102030405060708090100Average

Adv-inception-v389.990.691.292.092.993.694.495.196.496.997.393.7
ResGN + Adv-inception-v398.498.598.798.899.099.199.399.399.499.599.899.1
Detection + ResGN + Adv-inception-v398.298.498.798.999.199.299.499.599.799.899.999.2
Randomization + Adv-inception-v389.389.790.391.792.393.193.894.395.195.896.292.9
HGD + Adv-inception-v384.384.985.886.487.588.389.290.190.591.192.188.2
ComDefend + Adv-inception-v389.189.690.390.591.191.391.992.392.593.494.691.5