Research Article

Robust Object Tracking via Reverse Low-Rank Sparse Learning and Fractional-Order Variation Regularization

Algorithm 1

Numerical implementation for reverse low-rank sparse learning and fractional-order variation regularization.
 Input: template matrix , dictionary , weight coefficients , , , and .
 Output: .
(1)Initiate parameters: , , .
(2)While not converged do
(3)Fixing other variables to update ; (equation (8))
(4)Fixing other variables to update ; (equation (11))
(5)Fixing other variables to update ; (equation (15))
(6)Updating target template ; (equation (16))
(7)end