Research Article
Convergence Analysis of Implicit Euler Method for a Class of Nonlinear Impulsive Fractional Differential Equations
Table 1
Error and convergence order of numerical method (
7) with different
.
| | N = 40 | N = 80 | N = 160 | N = 320 | N = 640 |
| = 1.1 | 4.197e − 2 | 2.108e − 2 | 1.047e − 2 | 5.112e − 3 | 2.425e − 3 | 0.993 | 1.010 | 1.033 | 1.076 | — | = 1.3 | 4.849e − 2 | 2.430e − 2 | 1.205e − 2 | 5.881e − 3 | 2.789e − 3 | 0.997 | 1.012 | 1.034 | 1.076 | — | = 1.5 | 6.299e − 2 | 3.157e − 2 | 1.566e − 2 | 7.644e − 3 | 3.625e − 3 | 0.997 | 1.012 | 1.034 | 1.076 | — | = 1.7 | 8.186e − 2 | 4.096e − 2 | 2.029e − 2 | 9.901e − 3 | 4.694e − 3 | 0.999 | 1.013 | 1.035 | 1.077 | — | = 1.9 | 8.612e − 2 | 4.283e − 2 | 2.115e − 2 | 1.031e − 2 | 4.882e − 3 | 1.008 | 1.018 | 1.037 | 1.078 | — |
|
|