Research Article

Cultural Emperor Penguin Optimizer and Its Application for Face Recognition

Table 2

Parameter setting of nine algorithms.

AlgorithmsParametersValues

Cultural emperor penguin optimizer (CEPO)Size of population80
Control parameter [1.5, 2]
Control parameter [2, 3]
Movement parameter 2
The constant 0.06
Maximum iteration100

Moth-flame optimization (MFO) [9]Size of population80
Convergence constant[−1, −2]
Logarithmic spiral0.75
Maximum iteration100

Grey wolf optimizer (GWO) [8]Size of population80
Control parameter[0, 2]
Maximum iteration100

Particle swarm optimization (PSO) [6]Size of population80
Inertia weight0.75
Cognitive and social coeff1.8, 2
Maximum iteration100

Genetic algorithm (GA) [5]Size of population80
Probability of crossover0.9
Probability of mutation0.05
Maximum iteration100

Cultural algorithm (CA) [14]Size of population80
The constant0.06
Maximum iteration100

Emperor penguin optimizer (EPO) [12]Size of population80
Control parameter[1.5, 2]
Control parameter[2, 3]
Movement parameter2
Maximum iteration100

Cultural firework algorithm (CFA) [17]Size of population80
Cost parameter0.025, 0.2
The constant0.3
Maximum iteration100

Emperor penguin and social engineering optimizer (EPSEO) [13]Size of population80
Rate of training0.2
Rate of spotting an attack0.05
Number of attacks50
Control parameter[1.5, 2]
Control parameter[2, 3]
Movement parameter2
Maximum iteration100