Research Article
Cultural Emperor Penguin Optimizer and Its Application for Face Recognition
Table 2
Parameter setting of nine algorithms.
| Algorithms | Parameters | Values |
| Cultural emperor penguin optimizer (CEPO) | Size of population | 80 | Control parameter | [1.5, 2] | Control parameter | [2, 3] | Movement parameter | 2 | The constant | 0.06 | Maximum iteration | 100 |
| Moth-flame optimization (MFO) [9] | Size of population | 80 | Convergence constant | [−1, −2] | Logarithmic spiral | 0.75 | Maximum iteration | 100 |
| Grey wolf optimizer (GWO) [8] | Size of population | 80 | Control parameter | [0, 2] | Maximum iteration | 100 |
| Particle swarm optimization (PSO) [6] | Size of population | 80 | Inertia weight | 0.75 | Cognitive and social coeff | 1.8, 2 | Maximum iteration | 100 |
| Genetic algorithm (GA) [5] | Size of population | 80 | Probability of crossover | 0.9 | Probability of mutation | 0.05 | Maximum iteration | 100 |
| Cultural algorithm (CA) [14] | Size of population | 80 | The constant | 0.06 | Maximum iteration | 100 |
| Emperor penguin optimizer (EPO) [12] | Size of population | 80 | Control parameter | [1.5, 2] | Control parameter | [2, 3] | Movement parameter | 2 | Maximum iteration | 100 |
| Cultural firework algorithm (CFA) [17] | Size of population | 80 | Cost parameter | 0.025, 0.2 | The constant | 0.3 | Maximum iteration | 100 |
| Emperor penguin and social engineering optimizer (EPSEO) [13] | Size of population | 80 | Rate of training | 0.2 | Rate of spotting an attack | 0.05 | Number of attacks | 50 | Control parameter | [1.5, 2] | Control parameter | [2, 3] | Movement parameter | 2 | Maximum iteration | 100 |
|
|