Research Article

Fruit Fly Optimization Algorithm Based on Single-Gene Mutation for High-Dimensional Unconstrained Optimization Problems

Table 2

The performance on test functions with n = 100 and 200.

FunctionESSMERIFFOSFFOAFFOSM

f1n = 1001.49E + 021.91E + 021.68E + 021.25E + 02
/1.04E + 02/4.08E + 02/6.20E + 02/5.02E + 01
n = 2004.31E + 024.46E + 024.59E + 023.31E + 02
/4.02E + 02/4.38E + 02/7.01E + 02/3.16E + 02
f2n = 1003.98E − 143.97E − 163.66E − 167.43E − 43
/4.63E − 14/9.66E − 17/1.12E − 16/6.64E − 42
n = 2001.34E − 073.25E − 153.01E − 151.15E − 22
/1.69E − 07/6.09E − 16/4.12E − 16/1.61E − 22
f3n = 1005.27E − 087.51E − 097.74E − 095.37E − 13
/5.15E − 08/7.90E − 10/9.77E − 10/1.91E − 13
n = 2006.13E − 051.47E − 081.53E − 081.34E − 12
/2.56E − 05/1.17E − 09/1.21E − 09/1.08E − 12
f4n = 1001.32E − 071.16E − 071.37E − 074.10E − 14
/1.37E − 07/5.39E − 08/4.56E − 08/8.40E − 15
n = 2004.53E − 046.63E − 076.73E − 073.84E − 12
/1.71E − 04/1.51E − 07/1.23E − 07/2.27E − 12
f5n = 1002.14E − 019.90E − 031.23E − 027.40E − 03
/1.45E − 01/2.41E − 02/2.21E − 02/2.51E − 02
n = 2002.95E − 019.90E − 031.23E − 029.90E − 03
/1.76E − 01/2.72E − 02/1.81E − 02/1.22E − 02
f6n = 1001.26E − 129.95E − 019.95E − 012.01E − 07
/1.28E − 02/7.88E − 01/7.86E − 01/4.96E − 01
n = 2003.76E − 061.69E + 011.89E + 012.00E + 00
/7.57E − 01/5.38E + 00/3.77E + 00/1.49E + 00
Rn = 1003.172.6672.8331.333
n = 2003.2642.5562.8191.361