Research Article

Dimensionality Reduction with Sparse Locality for Principal Component Analysis

Algorithm 2

SLPCA procedure.
Input: Training set X = {x1, x2, …, xN}, the reduced dimension k (with k ≤ D).
Step 1: Select parameters: ρ, θ, λ1, λ2.
Step 2: Alternative Optimization
Initialize ρ = 0, θ = 0, U = 0, V = 0.
While no convergence do
 (1) Fix the other variables and update U using equation (20);
 (2) Fix the other variables and update using equation (22);
 (3) Fix the other variable and update the auxiliary using equation (25);
 (4) Fix the other variables and update W using equation (27);
 (5) Update the Lagrange multiplier and other parameters using equation (28);
End and
Output: k-dimensional vector U, , , .