Research Article
A Computational Intelligence Approach for Predicting Medical Insurance Cost
Table 5
Outcomes of machine learning models.
| Model | RMSE | R2_score (training) | R2_score (test) | Cross-validation |
| Linear Regression | 0.479808 | 0.741410 | 0.782694 | 0.744528 | Ridge Regressor | 0.465206 | 0.741150 | 0.783800 | 0.825999 | Support Vector Regression | 0.358771 | 0.847234 | 0.871283 | 0.842307 | Random Forest Regressor | 0.347522 | 0.874422 | 0.879228 | 0.849299 | Stochastic Gradient Boosting | 0.340189 | 0.17448 | 0.898595 | 0.858293 | XGBoost | 0.342509 | 0.831859 | 0.883683 | 0.853654 | Decision Tree (CART) | 0.363336 | 0.820118 | 0.873213 | 0.833492 | Multiple Linear Regression | 0.409725 | 0.74636 | 0.794312 | 0.755814 | k-Nearest Neighbors | 0.726835 | 0.274117 | 0.356719 | 0.318517 |
|
|