Research Article
FRGAN: A Blind Face Restoration with Generative Adversarial Networks
Table 2
PSNR- and SSIM-based superresolution performance on 300 W balanced dataset across pose (higher is better).
| Method | PSNR | SSIM | 30 | 60 | 90 | 30 | 60 | 90 |
| Bicubic | 21.03 | 20.20 | 20.98 | 0.7304 | 0.7597 | 0.7902 | PFSR | 20.42 | 21.96 | 21.76 | 0.7675 | 0.7871 | 0.7965 | SR-GAN | 20.01 | 20.94 | 21.48 | 0.7269 | 0.7465 | 0.7586 | DIC | 19.06 | 20.91 | 20.86 | 0.7462 | 0.7521 | 0.8014 | Ours-i | 21.49 | 22.53 | 23.28 | 0.7963 | 0.8056 | 0.8301 | Ours-ii | 21.38 | 22.66 | 23.54 | 0.7985 | 0.7948 | 0.8199 | Ours-iii | 21.57 | 22.35 | 23.32 | 0.7991 | 0.8095 | 0.8158 | Ours-iv | 20.60 | 21.72 | 22.61 | 0.7721 | 0.7964 | 0.8009 |
|
|
The results are not indicative of visual quality.
|