Research Article

A Machine Learning-Based Big EEG Data Artifact Detection and Wavelet-Based Removal: An Empirical Approach

Table 2

Comparison of the recommended method with the existing method for artifact removal.

MethodologyEvaluation parametersSignal-to-noise ratio (SNR)
102025

EEMD-CCA [6]DSNR18.61121.792025.4018
Recommended (EEMD-CCA-SWT)27.277532.822931.3270

EEMD-CCA [6]Lambda63.00967.561071.9953
Recommended (EEMD-CCA-SWT)75.630788.74687.2213

EEMD-CCA [6]Correlation improvement0.00470.00600.0054
Recommended (EEMD-CCA-SWT)0.01610.02580.0140

EEMD-CCA [6]Spectral distortion (Pdis)0.89740.96970.9487
Recommended (EEMD-CCA-SWT)0.96400.98560.9867

EEMD-CCA [6]RMSE0.12850.11660.1072
Recommended (EEMD-CCA-SWT)0.0930.11260.0974

EEMD-CCA [6]Coherence improvement () in percentage84.8683.1083.29
Recommended (EEMD-CCA-SWT)86.9384.2685.11