Research Article
A Machine Learning-Based Big EEG Data Artifact Detection and Wavelet-Based Removal: An Empirical Approach
Table 2
Comparison of the recommended method with the existing method for artifact removal.
| Methodology | Evaluation parameters | Signal-to-noise ratio (SNR) | 10 | 20 | 25 |
| EEMD-CCA [6] | DSNR | 18.611 | 21.7920 | 25.4018 | Recommended (EEMD-CCA-SWT) | 27.2775 | 32.8229 | 31.3270 |
| EEMD-CCA [6] | Lambda | 63.009 | 67.5610 | 71.9953 | Recommended (EEMD-CCA-SWT) | 75.6307 | 88.746 | 87.2213 |
| EEMD-CCA [6] | Correlation improvement | 0.0047 | 0.0060 | 0.0054 | Recommended (EEMD-CCA-SWT) | 0.0161 | 0.0258 | 0.0140 |
| EEMD-CCA [6] | Spectral distortion (Pdis) | 0.8974 | 0.9697 | 0.9487 | Recommended (EEMD-CCA-SWT) | 0.9640 | 0.9856 | 0.9867 |
| EEMD-CCA [6] | RMSE | 0.1285 | 0.1166 | 0.1072 | Recommended (EEMD-CCA-SWT) | 0.093 | 0.1126 | 0.0974 |
| EEMD-CCA [6] | Coherence improvement () in percentage | 84.86 | 83.10 | 83.29 | Recommended (EEMD-CCA-SWT) | 86.93 | 84.26 | 85.11 |
|
|