Research Article

A Machine Learning-Based Big EEG Data Artifact Detection and Wavelet-Based Removal: An Empirical Approach

Table 3

Comparison of EEG artifact removal performance before and after optimization.

MethodologyEvaluation parametersSignal-to-noise ratio (SNR)
102025

EEMD-CCA-SWTDSNR27.277532.822931.3270
EEMD-CCA-SWT + HHO28.234534.247537.2172
EEMD-CCA-SWTLambda75.630788.74687.2213
EEMD-CCA-SWT + HHO78.630789.62789.6127

EEMD-CCA-SWTCorrelation improvement0.01610.02580.0140
EEMD-CCA-SWT + HHO0.01410.02610.0121

EEMD-CCA-SWTSpectral distortion (Pdis)0.96400.98560.9867
EEMD-CCA-SWT + HHO0.93560.97560.952

EEMD-CCA-SWTRMSE0.0930.11260.0974
EEMD-CCA-SWT + HHO0.0910.11230.0913

EEMD-CCA-SWTCoherence improvement () in percentage86.9384.2685.11
EEMD-CCA-SWT + HHO85.8284.2283.09