Research Article
A Machine Learning-Based Big EEG Data Artifact Detection and Wavelet-Based Removal: An Empirical Approach
Table 3
Comparison of EEG artifact removal performance before and after optimization.
| Methodology | Evaluation parameters | Signal-to-noise ratio (SNR) | 10 | 20 | 25 |
| EEMD-CCA-SWT | DSNR | 27.2775 | 32.8229 | 31.3270 | EEMD-CCA-SWT + HHO | 28.2345 | 34.2475 | 37.2172 | EEMD-CCA-SWT | Lambda | 75.6307 | 88.746 | 87.2213 | EEMD-CCA-SWT + HHO | 78.6307 | 89.627 | 89.6127 |
| EEMD-CCA-SWT | Correlation improvement | 0.0161 | 0.0258 | 0.0140 | EEMD-CCA-SWT + HHO | 0.0141 | 0.0261 | 0.0121 |
| EEMD-CCA-SWT | Spectral distortion (Pdis) | 0.9640 | 0.9856 | 0.9867 | EEMD-CCA-SWT + HHO | 0.9356 | 0.9756 | 0.952 |
| EEMD-CCA-SWT | RMSE | 0.093 | 0.1126 | 0.0974 | EEMD-CCA-SWT + HHO | 0.091 | 0.1123 | 0.0913 |
| EEMD-CCA-SWT | Coherence improvement () in percentage | 86.93 | 84.26 | 85.11 | EEMD-CCA-SWT + HHO | 85.82 | 84.22 | 83.09 |
|
|