Research Article

Representation Learning Based on Autoencoder and Deep Adaptive Clustering for Image Clustering

Table 2

Clustering performance and comparison, ACC (%) and NMI (%) and ARI (%) on all datasets.

Data setsFashion-MNISTCifar-10Cifar-100STL-10
MetricNMIARIACCNMIARIACCNMIARIACCNMIARIACC

K-means [35]18.5514.3722.898.714.8722.898.392.8012.9712.456.0819.20
SSC [36]13.3514.2320.8110.288.5324.679.012.1813.609.784.7915.88
GLWTDN [37]20.3118.7225.7423.9316.8931.3510.044.7616.4524.9616.1030.30
CILR [15]25.6820.7130.1011.056.1225.839.434.5315.5413.986.5224.52
GMVAE [16]25.6816.0730.1028.4718.3733.6413.664.9215.8423.6515.7231.77
CatGAN [27]26.3117.1132.2426.4617.5731.5212.04.5315.1021.0013.9029.84
JULE [17]43.7933.9947.7819.2313.7727.1510.263.2713.6718.1516.4327.69
DEC [24]60.5458.4365.2525.6816.0730.1013.584.9518.5227.6018.6135.90
DAC [20]65.3862.4170.5243.7933.9947.7821.2411.0025.5240.3328.6448.18
Ours70.6669.4375.2146.3942.2552.2525.4616.1030.4744.3133.0852.12

Most of the results are excerpted from [20]. The best and second-best results are marked in bold and underlined, respectively.