Research Article

Representation Learning Based on Autoencoder and Deep Adaptive Clustering for Image Clustering

Table 3

Network architecture in experiments.

Fashion-MNIST
Encoder3 × 3 conv., stride 2, 8 BN Relu
3 × 3 conv., stride 2, 16 BN Relu
3 × 3 conv., stride 2, 32 BN Relu
3 × 3 conv., stride 2, 64 BN Relu
Decoder3 × 3 deconv., stride 2, 32 BN ReluClustering(256,64) fc., BN Relu
(64,10) fc., BN Relu
Softmax
3 × 3 deconv., stride 2, 16 BN Relu
3 × 3 deconv., stride 2, 8 BN Relu
3 × 3 deconv., stride 2, 1

Cifar-10 and Cifar-100 dataset
Encoder3 × 3 conv., stride 2, 8 BN Relu
3 × 3 conv., stride 2, 16 BN Relu
3 × 3 conv., stride 2, 32 BN Relu
3 × 3 conv., stride 2, 64 BN Relu
Decoder3 × 3 deconv., stride 2, 32 BN ReluClustering(256,64) fc., BN Relu
(64,k) fc., BN Relu
Softmax
3 × 3 deconv., stride 2, 16 BN Relu
3 × 3 deconv., stride 2, 8 BN Relu
3 × 3 deconv., stride 2, 3

STL-10 dataset
Encoder5 × 5 conv., stride 4, 16 BN Relu
3 × 3 conv., stride 2, 32 BN Relu
3 × 3 conv., stride 2, 64 BN Relu
3 × 3 conv., stride 2, 128 BN Relu
3 × 3 conv., stride 1, 256 BN Relu
Decoder3 × 3 deconv., stride 2, 128 BN ReluClusteringFC (256,64) fc., BN Relu
(64,10) fc., BN Relu
Softmax
3 × 3 deconv., stride 2, 64 BN Relu
3 × 3 deconv., stride 2, 32 BN Relu
3 × 3 deconv., stride 2, 16 BN Relu
3 × 3 deconv., stride 2, 3