Research Article

Reservoir Inflow Prediction by Employing Response Surface-Based Models Conjunction with Wavelet and Bootstrap Techniques

Table 4

Performances of numerous prediction models for 1 to 3 days lead time for testing data set 2010 (1 July to 31 September) of Chenab river basin.

DaysModel typeModelNSERMSE (m3/s)MAE (m3/s)CP

1 dTraditionalMLR0.84260.40100.20820.7398
FORS0.86210.37800.19410.7719
QRS0.89130.33900.19520.8201
WaveletWFORS0.97610.22500.14700.9521
WQRS0.97960.21700.13540.9563
BootstrapBFORS0.98840.02140.00710.9981
BQRS0.99290.00790.00210.9961

2 dTraditionalMLR0.84290.40100.20610.7399
FORS0.86220.37700.19230.7719
QRS0.89130.33900.19420.8202
WaveletWFORS0.97790.22300.14370.9526
WQRS0.97990.21600.13280.9565
BootstrapBFORS0.99650.01280.00440.9977
BQRS0.99710.00820.00210.9988

3 dTraditionalMLR0.84300.40100.20590.7402
FORS0.86220.37700.19220.7719
QRS0.89140.33900.19360.8202
WaveletWFORS0.97820.22200.14150.9529
WQRS0.98000.21500.13160.9567
BootstrapBFORS0.99840.01220.00380.9984
BQRS0.99870.00490.00110.9994