Research Article

Multiteam Competitive Optimization Algorithm and Its Application in Bearing Fault Diagnosis

Table 3

The comparison of test samples recognition accuracy for wine.

AlgorithmRecognition accuracy 1Recognition accuracy 2Recognition accuracy 3

K-MTCO97.5% (78/80)97.5% (78/80)97.5% (78/80)
(25/25) (31/33) (22/22)(25/25) (31/33) (22/22)(25/25) (31/33) (22/22)

S-MTCO97.5% (78/80)97.5% (78/80)96.25% (77/80)
(25/25) (32/33) (21/22)(25/25) (32/33) (21/22)(25/25) (31/33) (21/22)

SVM96.25% (77/80)97.5% (78/80)96.25% (77/80)
(24/25) (32/33) (21/22)(25/25) (32/33) (21/22)(24/25) (32/33) (21/22)

BP95% (76/80)95% (76/80)92.50% (74/80)
(25/25) (29/33) (22/22)(25/25) (30/33) (21/22)(25/25) (29/33) (20/22)

LVQ92.50% (74/80)92.50% (74/80)93.75% (75/80)
(25/25) (27/33) (22/22)(25/25) (27/33) (22/22)(25/25) (28/33) (22/22)

k-NNk = 1 : 91.25% (73/80)k = 15 : 96.25% (77/80)k = 15 : 96.25% (77/80)
(25/25) (27/33) (21/22)(25/25) (30/33) (22/22)(0/25) (33/33) (0/22)