Research Article
Multiteam Competitive Optimization Algorithm and Its Application in Bearing Fault Diagnosis
Table 5
The comparison of test samples recognition accuracy for seeds.
| | Algorithm | Recognition accuracy 1 | Recognition accuracy 2 | Recognition accuracy 3 |
| | K-MTCO | 97.78% (88/90) | 97.78% (88/90) | 97.78% (88/90) | | (29/30) (30/30) (29/30) | (29/30) (30/30) (29/30) | (28/30) (30/30) (30/30) |
| | S-MTCO | 95.56% (86/90) | 95.56% (86/90) | 95.56% (86/90) | | (27/30) (30/30) (29/30) | (27/30) (30/30) (29/30) | (27/30) (30/30) (29/30) |
| | SVM | 95.56% (86/90) | 95.56% (86/90) | 95.56% (86/90) | | (27/30) (30/30) (29/30) | (27/30) (30/30) (29/30) | (27/30) (30/30) (29/30) |
| | BP | 94.44% (85/90) | 95.56% (86/90) | 96.67% (87/90) | | (25/30) (30/30) (30/30) | (26/30) (30/30) (30/30) | (27/30) (30/30) (30/30) |
| | LVQ | 95.56% (86/90) | 94.44% (85/90) | 94.44% (85/90) | | (27/30) (29/30) (30/30) | (27/30) (29/30) (29/30) | (27/30) (29/30) (29/30) |
| | k-NN | k = 1 : 95.56% (86/90) | k = 4 : 97.78% (88/90) | k = 87 : 92.22% (83/90) | | (26/30) (30/30) (30/30) | (28/30) (30/30) (30/30) | (24/30) (30/30) (29/30) |
|
|