Research Article

Multiteam Competitive Optimization Algorithm and Its Application in Bearing Fault Diagnosis

Table 5

The comparison of test samples recognition accuracy for seeds.

AlgorithmRecognition accuracy 1Recognition accuracy 2Recognition accuracy 3

K-MTCO97.78% (88/90)97.78% (88/90)97.78% (88/90)
(29/30) (30/30) (29/30)(29/30) (30/30) (29/30)(28/30) (30/30) (30/30)

S-MTCO95.56% (86/90)95.56% (86/90)95.56% (86/90)
(27/30) (30/30) (29/30)(27/30) (30/30) (29/30)(27/30) (30/30) (29/30)

SVM95.56% (86/90)95.56% (86/90)95.56% (86/90)
(27/30) (30/30) (29/30)(27/30) (30/30) (29/30)(27/30) (30/30) (29/30)

BP94.44% (85/90)95.56% (86/90)96.67% (87/90)
(25/30) (30/30) (30/30)(26/30) (30/30) (30/30)(27/30) (30/30) (30/30)

LVQ95.56% (86/90)94.44% (85/90)94.44% (85/90)
(27/30) (29/30) (30/30)(27/30) (29/30) (29/30)(27/30) (29/30) (29/30)

k-NNk = 1 : 95.56% (86/90)k = 4 : 97.78% (88/90)k = 87 : 92.22% (83/90)
(26/30) (30/30) (30/30)(28/30) (30/30) (30/30)(24/30) (30/30) (29/30)