Research Article

Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models

Table 11

Production prediction results (CSS).

Original dataM1M2M3
Predicted value (t)Error (%)Predicted value (t)Error (%)Predicted value (t)Error (%)

1942621982042.031942620.001942620.00
3276103210362.013305810.913154263.72
2750262794161.6030631611.3831862015.85
2884562895070.362761994.252789593.29
2559182597271.492471883.412397566.32
2936782867362.3623196921.0123182621.06
2036672032100.222135484.852074741.87
1783981811121.5220930917.3321379819.84
1673751710732.2119882518.7919388715.84
2126291977227.011994686.192037764.16
2243122096786.522039459.082203451.77
1718431621125.6619573213.9019403712.92
1596371622631.6418019912.881652183.50
2008242031151.141825599.101816429.55
2190482281564.162011128.192193410.13
2098002186044.202085720.592240276.78
2251002315602.872047229.052079887.60
2155332198502.002058074.512078973.54
MAPE2.728.637.65
2135872066393.252190312.552187992.44
2065471971024.572104781.902099061.63
18562423010923.971988377.121982766.82
2456242303796.212363683.772358593.98
22348718023819.352395467.192390846.98
1745431869557.111881297.781876617.52
R2āˆ’0.320.770.79
RMSE269981116410872
MAPE10.745.054.89