Research Article
Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models
Table 6
Production association rule results of CSS.
| Influence factor | Association rule | Confidence |
| Steam injection volume | forzenset({“101”})-->forzenset({“1”}) | 0.728 | Steam injection pressure | forzenset({“101”})-->forzenset({“5”}) | 0.512 | Steam injection temperature | forzenset({“101”})-->forzenset({“10”}) | 0.382 | Steam injection dryness | forzenset({“101”})-->forzenset({“13”}) | 0.583 | Round of CSS | forzenset({“101”})-->forzenset({“20”}) | 0.628 | Cycle of CSS | forzenset({“101”})-->forzenset({“22”}) | 0.457 | Crude oil viscosity | forzenset({“101”})-->forzenset({“28”}) | 0.493 | Soaking time | forzenset({“101”})-->forzenset({“29”}) | 0.378 | Oil well opening times | forzenset({“101”})-->forzenset({“33”}) | 0.697 | Oil saturation | forzenset({“101”})-->forzenset({“37”}) | 0.483 | Permeability | forzenset({“101”})-->forzenset({“41”}) | 0.498 | Porosity | forzenset({“101”})-->forzenset({“45”}) | 0.447 | Reservoir temperature | forzenset({“101”})-->forzenset({“49”}) | 0.323 | Reservoir pressure | forzenset({“101”})-->forzenset({“53”}) | 0.428 | Reservoir thickness | forzenset({“101”})-->forzenset({“57”}) | 0.497 |
|
|