Research Article

Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models

Table 6

Production association rule results of CSS.

Influence factorAssociation ruleConfidence

Steam injection volumeforzenset({“101”})-->forzenset({“1”})0.728
Steam injection pressureforzenset({“101”})-->forzenset({“5”})0.512
Steam injection temperatureforzenset({“101”})-->forzenset({“10”})0.382
Steam injection drynessforzenset({“101”})-->forzenset({“13”})0.583
Round of CSSforzenset({“101”})-->forzenset({“20”})0.628
Cycle of CSSforzenset({“101”})-->forzenset({“22”})0.457
Crude oil viscosityforzenset({“101”})-->forzenset({“28”})0.493
Soaking timeforzenset({“101”})-->forzenset({“29”})0.378
Oil well opening timesforzenset({“101”})-->forzenset({“33”})0.697
Oil saturationforzenset({“101”})-->forzenset({“37”})0.483
Permeabilityforzenset({“101”})-->forzenset({“41”})0.498
Porosityforzenset({“101”})-->forzenset({“45”})0.447
Reservoir temperatureforzenset({“101”})-->forzenset({“49”})0.323
Reservoir pressureforzenset({“101”})-->forzenset({“53”})0.428
Reservoir thicknessforzenset({“101”})-->forzenset({“57”})0.497