Research Article
Landmark-Based Facial Feature Construction and Action Unit Intensity Prediction
Table 3
Result for the AU intensity estimation.
| AUs | MSE | CORR | Proposed | RBNN | BPNN | SVR | Proposed | RBNN | BPNN | SVR |
| AU01 | 0.024178 | 0.026 | 0.047 | 0.051 | 0.992 | 0.991 | 0.957 | 0.960 | AU02 | 0.009237 | 0.012 | 0.013 | 0.027 | 0.997 | 0.997 | 0.970 | 0.978 | AU04 | 0.009893 | 0.012 | 0.066 | 0.059 | 0.995 | 0.995 | 0.893 | 0.824 | AU05 | 0.027837 | 0.030 | 0.134 | 0.123 | 0.992 | 0.991 | 0.881 | 0.895 | AU06 | 0.022889 | 0.025 | 0.119 | 0.107 | 0.989 | 0.989 | 0.841 | 0.859 | AU07 | 0.012078 | 0.013 | — | — | 0.994 | 0.994 | — | — | AU09 | 0.005872 | 0.010 | — | — | 0.998 | 0.998 | — | — | AU10 | 0.024854 | 0.024 | 0.036 | 0.033 | 0.996 | 0.988 | 0.924 | 0.939 | AU12 | 0.038977 | 0.039 | 0.042 | 0.039 | 0.985 | 0.985 | 0.939 | 0.930 | AU14 | 0.016743 | 0.021 | — | — | 0.994 | 0.988 | — | — | AU15 | 0.038062 | 0.042 | 0.056 | 0.060 | 0.981 | 0.979 | 0.890 | 0.892 | AU16 | 0.015238 | 0.017 | — | — | 0.993 | 0.992 | — | — | AU17 | 0.021056 | 0.023 | 0.043 | 0.041 | 0.990 | 0.989 | 0.896 | 0.923 | AU18 | 0.018616 | 0.019 | 0.064 | 0.056 | 0.992 | 0.992 | 0.955 | 0.947 | AU20 | 0.020243 | 0.025 | 0.058 | 0.046 | 0.987 | 0.983 | 0.878 | 0.913 | AU22 | 0.009127 | 0.018 | — | — | 0.997 | 0.997 | — | — | AU23 | 0.025397 | 0.028 | 0.092 | 0.099 | 0.982 | 0.980 | 0.921 | 0.925 | AU24 | 0.009601 | 0.012 | 0.149 | 0.126 | 0.996 | 0.995 | 0.790 | 0.863 | AU25 | 0.009886 | 0.011 | — | — | 0.995 | 0.994 | — | — | AU26 | 0.017167 | 0.018 | 0.025 | 0.031 | 0.988 | 0.988 | 0.954 | 0.976 | AU27 | 0.008465 | 0.008 | 0.097 | 0.104 | 0.996 | 0.996 | 0.931 | 0.969 | AU28 | 0.016481 | 0.024 | — | — | 0.994 | 0.991 | — | — |
|
|
AU, action unit; BPNN, backpropagation neural network; CORR, correlation coefficient; MSE, mean square error; RBNN, radial basis neural network.
|