Research Article

Global Residue Harmonic Balance Method for a System of Strongly Nonlinear Oscillator

Table 1

Comparison of frequency corresponding to various parameters of this system.

ModeA[28]

11.00.3268450.1295790.2325980.0875841.00705 (0.30664)1.010180 (0.00297)1.01015
20.51.6420330.9130550.3135610.2042970.93255 (0.40947)0.935268 (0.11982)0.93639
30.24.0514861.6652320.2814180.1496770.96546 (0.12144)0.965852 (0.08152)0.96664
40.38.2055783.1453680.2723130.1337080.85970 (0.52752)0.864408 (0.01712)0.86426
11.20.3038440.1150760.2325980.0875841.02135 (0.67990)1.027492 (0.08246)1.02834
20.80.8939810.4673990.3135610.2042970.94117 (0.68750)0.947891 (0.02226)0.94768
30.45.0746361.9719620.2814180.1496770.85275 (0.65326)0.858566 (0.02516)0.85835
40.35.3716261.9958200.2723130.1337080.90371 (0.32569)0.906268 (0.04324)0.90666
11.10.3338610.1319140.3331050.1299231.05601 (0.50254)1.060826 (0.04843)1.06134
20.61.5129300.8027000.3794170.2502830.92528 (0.59649)0.930113 (0.07810)0.93084
30.44.2789911.7154240.3182010.1733130.87526 (0.53749)0.879977 (0.00147)0.87999
40.310.0150073.8204950.2971090.1492310.83552 (0.79887)0.841654 (0.06958)0.84224
10.90.3272310.1270220.3331050.1299231.03871 (0.31394)1.040568 (0.13551)1.04198
20.71.3569640.6960430.3794170.2502830.91850 (0.74083)0.925756 (0.04388)0.92535
30.44.2333891.6574640.3182010.1733130.87662 (0.52277)0.881255 (0.00284)0.88123
40.111.1785634.2002500.2971090.1492310.97418 (0.14969)0.974368 (0.13038)0.97564