Research Article
Real-Time Arrhythmia Classification Algorithm Using Time-Domain ECG Feature Based on FFNN and CNN
Table 13
Comparison of the proposed algorithm with other studies.
| Method | Acc | P (N) | R (N) | P (SVEB) | R (SVEB) | P (VEB) | R (VEB) | P (F) | R (F) |
| Proposed | 0.915 | 0.953 | 0.962 | 0.289 | 0.103 | 0.811 | 0.909 | 0.050 | 0.003 | Proposed | 0.942 | 0.983 | 0.958 | 0.123 | 0.333 | 0.956 | 0.862 | 0.008 | 0.176 | Luo et al. [26] | 0.893 | 0.930 | 0.953 | 0.473 | 0.154 | 0.668 | 0.604 | 0.200 | 0.500 | Mar et al. [14] | 0.890 | 0.992 | 0.942 | 0.567 | 0.862 | 0.934 | 0.924 | 0.177 | 0.664 | Alvarado et al. [27] | 0.936 | 0.992 | 0.942 | 0.567 | 0.862 | 0.934 | 0.924 | 0.177 | 0.664 | Ye et al. [28] | 0.882 | 0.982 | 0.900 | 0.551 | 0.564 | 0.603 | 0.847 | 0.058 | 0.358 | Zhang et al. [29] | 0.883 | 0.990 | 0.889 | 0.360 | 0.791 | 0.928 | 0.855 | 0.137 | 0.938 | Niu et al. [30] | 0.923 | 0.974 | 0.939 | 0.732 | 0.766 | 0.578 | 0.851 | 0.449 | 0.384 |
|
|