Research Article

Analysis of Diaphragm Wall Deflection Induced by Excavation Based on Machine Learning

Table 5

MSEs of different algorithms on 10-fold cross validation (unit: mm2).

Subset no.Task 1Task 3
BPNNLSTMGRUBPNNLSTMGRU

Short-term prediction tasks
13.472.210.911.391.220.38
212.492.361.221.862.070.64
37.143.790.7810.466.700.39
44.111.240.530.180.380.30
59.221.860.610.650.760.37
65.411.350.4632.9520.140.73
717.258.561.760.270.271.56
8125.364.861.070.410.190.69
9624.145.931.2713.845.001.62
1063.0410.092.500.270.261.46
Avg.87.164.231.116.233.700.81

Subset no.Task 2Task 4
BPNNLSTMGRUBPNNLSTMGRU

Long-term prediction tasks
1181.3819.473.508.295.512.21
244.1814.676.996.614.852.36
375.0914.386.947.786.343.79
444.074.422.785.015.051.24
5101.182.683.534.673.441.86
67.0441.552.698.0518.821.35
7402.822.235.5516.896.608.56
8185.213.679.3417.761.344.86
998.7724.879.2429.5712.025.93
10194.294.176.6223.313.9510.09
Avg.133.4013.215.7212.796.794.23