Research Article
A New Hybrid Model for Hourly Solar Radiation Forecasting Using Daily Classification Technique and Machine Learning Algorithms
Table 3
The seasonal comparison between the ML models.
| Error metrics | Winter | Spring | Summer | Autumn | ANN | SVR | GB | RF | ANN | SVR | GB | RF | ANN | SVR | GB | RF | ANN | SVR | GB | RF |
| RMSE (W/m2) | 50.06 | 48.76 | 50.29 | 48.94 | 93.89 | 94.43 | 94.27 | 93.17 | 41.97 | 42.01 | 44.71 | 43.30 | 51.42 | 51.97 | 51.44 | 51.22 | nRMSE (%) | 24.96 | 24.31 | 25.07 | 24.40 | 22.71 | 22.84 | 22.80 | 22.53 | 8.40 | 8.41 | 8.95 | 8.67 | 23.51 | 23.76 | 23.52 | 23.42 | MAE (W/m2) | 29.12 | 27.84 | 29.45 | 28.13 | 59.04 | 57.09 | 59.14 | 56.76 | 20.24 | 17.88 | 22.37 | 19.34 | 27.42 | 27.36 | 27.35 | 26.83 | nMAE (%) | 14.52 | 13.88 | 14.68 | 14.02 | 14.28 | 13.81 | 14.30 | 13.73 | 4.05 | 3.58 | 4.48 | 3.87 | 12.54 | 12.51 | 12.51 | 12.26 | AIC | 2336 | 23464 | 1735 | 17627 | 2563 | 23700 | 1962 | 17858 | 2346 | 23482 | 1763 | 17653 | 2369 | 23547 | 1767 | 17666 |
|
|