Research Article
Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
Table 1
Supervised scenarios for detecting adversarial samples.
| Model | Dataset | Method | Supervised scenario | FGSM | BIM | DeepFool | CW | PGD |
| DenseNet | CIFAR10 | Mahalanobis | 99.94 | 99.78 | 83.41 | 87.31 | 97.79 | Ours (lantent) | 99.95 | 99.98 | 97.46 | 96.11 | 99.42 | Ours (score) | 99.98 | 99.93 | 98.54 | 96.13 | 99.34 | CIFAR100 | Mahalanobis | 99.86 | 99.17 | 77.57 | 87.05 | 79.24 | Ours (lantent) | 100.00 | 99.86 | 97.22 | 98.01 | 90.35 | Ours (score) | 99.89 | 99.90 | 97.34 | 98.02 | 91.36 | SVHN | Mahalanobis | 99.85 | 99.28 | 95.10 | 97.03 | 98.41 | Ours (latent) | 99.95 | 99.85 | 99.25 | 98.65 | 99.49 | Ours (score) | 99.90 | 99.80 | 99.35 | 98.23 | 99.12 |
| ResNet | CIFAR10 | Mahalanobis | 99.94 | 99.57 | 91.57 | 95.84 | 89.81 | Ours (latent) | 99.98 | 99.86 | 98.66 | 97.89 | 100.00 | Ours (score) | 99.87 | 99.92 | 98.65 | 98.11 | 98.65 | CIFAR100 | Mahalanobis | 99.77 | 96.90 | 85.26 | 91.77 | 91.08 | Ours (lantent) | 99.92 | 99.11 | 94.68 | 97.21 | 99.95 | Ours (score | 99.93 | 97.91 | 94.34 | 92.34 | 92.34 | SVHN | Mahalanobis | 99.62 | 97.15 | 95.73 | 92.15 | 92.24 | Ours (latent) | 99.96 | 99.46 | 99.54 | 99.30 | 99.98 | Ours (score) | 99.65 | 98.34 | 96.54 | 97.56 | 97.45 |
|
|