Research Article

Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks

Table 1

Supervised scenarios for detecting adversarial samples.

ModelDatasetMethodSupervised scenario
FGSMBIMDeepFoolCWPGD

DenseNetCIFAR10Mahalanobis99.9499.7883.4187.3197.79
Ours (lantent)99.9599.9897.4696.1199.42
Ours (score)99.9899.9398.5496.1399.34
CIFAR100Mahalanobis99.8699.1777.5787.0579.24
Ours (lantent)100.0099.8697.2298.0190.35
Ours (score)99.8999.9097.3498.0291.36
SVHNMahalanobis99.8599.2895.1097.0398.41
Ours (latent)99.9599.8599.2598.6599.49
Ours (score)99.9099.8099.3598.2399.12

ResNetCIFAR10Mahalanobis99.9499.5791.5795.8489.81
Ours (latent)99.9899.8698.6697.89100.00
Ours (score)99.8799.9298.6598.1198.65
CIFAR100Mahalanobis99.7796.9085.2691.7791.08
Ours (lantent)99.9299.1194.6897.2199.95
Ours (score99.9397.9194.3492.3492.34
SVHNMahalanobis99.6297.1595.7392.1592.24
Ours (latent)99.9699.4699.5499.3099.98
Ours (score)99.6598.3496.5497.5697.45