Research Article
Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
Table 2
Partially supervised scenarios in detecting adversarial samples.
| Model | Dataset | Method | Partially unsupervised scenario | FGSM | BIM | DeepFool | CW | PGD |
| DenseNet | CIFAR10 | Mahalanobis | 99.94 | 99.51 | 83.42 | 87.95 | 81.84 | Ours (latent) | 99.95 | 90.79 | 98.06 | 95.75 | 76.00 | Ours (score) | 99.98 | 92.23 | 96.09 | 97.18 | 78.00 | CIFAR100 | Mahalanobis | 99.86 | 98.27 | 75.63 | 86.20 | 39.32 | Ours (latent) | 100.00 | 89.86 | 83.14 | 79.08 | 62.35 | Ours (score) | 99.89 | 90.15 | 80.19 | 81.09 | 64.15 | SVHN | Mahalanobis | 99.85 | 99.12 | 93.47 | 96.95 | 81.40 | Ours (latent) | 99.95 | 99.00 | 98.71 | 98.16 | 94.15 | Ours (score) | 99.90 | 99.01 | 98.29 | 97.18 | 92.16 |
| ResNet | CIFAR10 | Mahalanobis | 99.94 | 98.91 | 78.06 | 93.90 | 100.00 | Ours (latent) | 99.98 | 73.19 | 96.79 | 95.71 | 100.00 | Ours (score) | 99.87 | 96.15 | 94.13 | 94.10 | 100.00 | CIFAR100 | Mahalanobis | 99.77 | 96.38 | 81.95 | 90.96 | 99.85 | Ours (latent) | 99.92 | 81.18 | 83.32 | 86.63 | 100.00 | Ours (score) | 99.93 | 80.10 | 80.13 | 87.01 | 100.00 | SVHN | Mahalanobis | 99.62 | 95.39 | 72.20 | 86.73 | 99.92 | Ours (latent) | 99.96 | 74.89 | 95.97 | 89.65 | 99.96 | Ours (score) | 99.65 | 75.14 | 95.10 | 89.75 | 99.23 |
|
|