Research Article

Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks

Table 2

Partially supervised scenarios in detecting adversarial samples.

ModelDatasetMethodPartially unsupervised scenario
FGSMBIMDeepFoolCWPGD

DenseNetCIFAR10Mahalanobis99.9499.5183.4287.9581.84
Ours (latent)99.9590.7998.0695.7576.00
Ours (score)99.9892.2396.0997.1878.00
CIFAR100Mahalanobis99.8698.2775.6386.2039.32
Ours (latent)100.0089.8683.1479.0862.35
Ours (score)99.8990.1580.1981.0964.15
SVHNMahalanobis99.8599.1293.4796.9581.40
Ours (latent)99.9599.0098.7198.1694.15
Ours (score)99.9099.0198.2997.1892.16

ResNetCIFAR10Mahalanobis99.9498.9178.0693.90100.00
Ours (latent)99.9873.1996.7995.71100.00
Ours (score)99.8796.1594.1394.10100.00
CIFAR100Mahalanobis99.7796.3881.9590.9699.85
Ours (latent)99.9281.1883.3286.63100.00
Ours (score)99.9380.1080.1387.01100.00
SVHNMahalanobis99.6295.3972.2086.7399.92
Ours (latent)99.9674.8995.9789.6599.96
Ours (score)99.6575.1495.1089.7599.23