Research Article
Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction
| Input: population size , the number of mutations , the batch size , batch data , and initial weight , | | output: close price of the next day | (1) | | (2) | Initializes model parameter : | (3) | forto | (4) | save model parameters | (5) | forto | (6) | forto | (7) | assign parameters to the model | (8) | get a batch as input of EBiLSTM; | (9) | switch(k) | (10) | case1: | (11) | case2: | (12) | case3: | (13) | end switch | (14) | if | (15) | | (16) | | (17) | | (18) | end for | (19) | end for | (20) | end for |
|