Research Article

Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction

Algorithm 1

Input: population size , the number of mutations , the batch size , batch data , and initial weight ,
output: close price of the next day
(1)
(2)Initializes model parameter :
(3)forto
(4) save model parameters
(5)forto
(6)   forto
(7)   assign parameters to the model
(8)  get a batch as input of EBiLSTM;
(9)  switch(k)
(10)   case1:
(11)   case2:
(12)   case3:
(13)  end switch
(14)  if
(15)   
(16)   
(17)   
(18)  end for
(19)end for
(20)end for