Research Article
An Optimized Neural Network Classification Method Based on Kernel Holistic Learning and Division
Table 3
Performance comparison on benchmark large sample datasets.
| Datasets | Methods | Training time (s) | Testing | No. of kernels | | |
| Svmguide1 | ELM | 0.15 | 90.52 | 90.36 | 200 | KHLD + ELM | 32.53 | 89.81 | 89.73 | 442,200 | HSARBF-ELM | 387.52 | 91.76 | 91.34 | 442,160 | KHLD + HSARBF-ELM | 423.64 | 91.24 | 90.81 | | CO-BP | 18.54 | 90.41 | 90.13 | 30 | KHLD + CO-BP | 55.37 | 89.38 | 89.22 | 442,30 | FOGDM-RBF | 28.53 | 92.34 | 92.18 | 70 | KHLD + FOGDM-RBF | 65.70 | 91.82 | 91.56 | 442,70 | Wilt | ELM | 0.06 | 62.63 | 60.40 | 100 | KHLD + ELM | 37.91 | 61.82 | 59.84 | 173,100 | HSARBF-ELM | 358.61 | 64.73 | 63.93 | 173,80 | KHLD + HSARBF-ELM | 387.42 | 64.17 | 63.49 | | CO-BP | 38.52 | 60.28 | 59.52 | 30 | KHLD + CO-BP | 78.65 | 59.56 | 58.72 | 173,30 | FOGDM-RBF | 24.73 | 62.85 | 62.37 | 60 | KHLD + FOGDM-RBF | 63.85 | 62.39 | 62.13 | 173,60 |
|
|